
Asset Management

0. Overview

1. Introduction

Core Idea: Constructed the portfolio using the top-down approach --- 1.Current

macroeconomic environment; 2.Most stable industries; 3.Stocks that can yield

the most profit.

Background: The hawkish remarks of Fed officials put pressure on the stock index, and

the three major US stock indexes closed across the board. As the 2-year US bond yield

continues to rise, fears of a recession are growing in the market. The economic

situation is unstable.

Role: A risk-averse investor. Maximize investment returns while ensuring soundness.

Assumption:

1. Ignore transaction fees regardless of the number of transactions made.

2. Adjust trading strategies before the next quote appears.

3. Assume that the price of the U.S. treasury bill stays the same, i.e., it has an interest

rate of 1.00%.

2. Industry Picking Strategy

In this section, we completed the selection of investment sectors：

1. Use the Global Industry Classification Standard (GICS) to classify stocks

in the S&P500 into 11 sectors.

4/6/25, 12:03 PM Final Project_Sharpe

file:///Users/PC/Desktop/Forging Tomorrow/1 All Materials/4 Personal Website/3 Materials/3 Files/Python Project1_Yanchao Li.html 1/32

2. Download monthly price index data of the 11 sectors from January 2010 to

December 2013 and calculate their standard deviation.

3. Select 5 sectors whose standard deviation is the smallest from the total

11 sectors, convincing that they are the most stable 5 industries. In order of

standard deviation from smallest to largest, these five sectors are Utility

Industry, Communication Services Industry, Health Care Industry,

Information Technology Industry, and Industrials Industry.

Code Explanation:

Define the function to get the development of sectors for a certain period, then

calculate and sort the standard deviation of each sector.

(Data Source: https://www.spglobal.com/ratings/en/)

Code Explanation:

Find the five smallest standard deviation sectors, which are the most stable, and

print them out.

In [1]: import math
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import openpyxl as p
import yfinance as yf
from statsmodels.formula.api import ols
import statsmodels.formula.api as smf

In [2]: def get_stable_sectors(start_time, end_time):
 indus = pd.read_csv('11 sectors.csv')
 indus = indus.set_index('Date')
 indus_3y = indus.loc[start_time:end_time]
 x = indus_3y.std()
 x = x.sort_values()

 return x.index[0:5]

In [3]: stocks_number = 15
indus_start = '201001'
indus_end = '201312'

most_stable_indus = get_stable_sectors(indus_start, indus_end)

print('The 1st stable industry from Jan. 2010 to Dec. 2013 is ' + most_stable_i
print('The 2nd stable industry from Jan. 2010 to Dec. 2013 is ' + most_stable_i
print('The 3rd stable industry from Jan. 2010 to Dec. 2013 is ' + most_stable_i
print('The 4th stable industry from Jan. 2010 to Dec. 2013 is ' + most_stable_i
print('The 5th stable industry from Jan. 2010 to Dec. 2013 is ' + most_stable_i

4/6/25, 12:03 PM Final Project_Sharpe

file:///Users/PC/Desktop/Forging Tomorrow/1 All Materials/4 Personal Website/3 Materials/3 Files/Python Project1_Yanchao Li.html 2/32

https://www.spglobal.com/ratings/en/

The 1st stable industry from Jan. 2010 to Dec. 2013 is Utilities Industry.
The 2nd stable industry from Jan. 2010 to Dec. 2013 is Communication Services
Industry.
The 3rd stable industry from Jan. 2010 to Dec. 2013 is Health Care Industry.
The 4th stable industry from Jan. 2010 to Dec. 2013 is Information Technology
Industry.
The 5th stable industry from Jan. 2010 to Dec. 2013 is Industrials Industry.

2. Stock Picking Strategy

In this section, we completed the selection of investment stocks and the assignment of

stocksʼ weights：

1. We download the stocks in the S&P500 corresponding to the 5 selected

sectors from yahoo finance for the period from January 2010 to December

2013, using the adj closed price of each stock on the last day of each month

as its monthly price.

2. We converted the prices to log form to calculate the monthly return for

each stock and then calculated the average return and volatility for each stock

and the Sharpe ratio. From each industry, we selected the top 3 stocks in the

sectors in terms of the Sharpe ratio. The codes of the 15 stocks we selected

are: 'SO', 'ED', 'DUK', 'T', 'VZ', 'LUMN', 'JNJ', 'BDX', 'ABT', 'ADP', 'PAYX',

'IBM', 'LMT', 'WM', and 'UPS'.

3. We used the code to perform 100000 weight simulations and draw

scatter plots of returns and standard deviation for 10 stocks with 100000

different weight combinations and found the weight combined with the largest

Sharpe ratio.

4. As shown in the figure, we found the tangent point of the CML with the

efficient frontier, which is the optimal portfolio point we are looking for. Our

portfolio has a volatility of 9.30%, an expected return of 16.75%, and a

Sharpe Ratio of 1.694.

Code Explanation:

Get S&P500 stock symbols from Wikipedia and set column 'Symbol' as tickers.

Use for loop to adjust the format of the stock code in the 'Symbol' column.

In [4]: # Get S&P500 stocks symbols from Wikipedia and set column 'Symbol' as tickers.
sp500url = 'https://en.wikipedia.org/wiki/List_of_S%26P_500_companies'
data_table = pd.read_html(sp500url)
tickers = data_table[0]

Use for loop to adjust the format of the stock code in the 'Symbol' column.
for i in range(len(tickers)):
 if tickers['Symbol'][i] == 'BRK.B':
 tickers['Symbol'][i] == 'BRK-B'
 elif tickers['Symbol'][i] == 'BF.B':

4/6/25, 12:03 PM Final Project_Sharpe

file:///Users/PC/Desktop/Forging Tomorrow/1 All Materials/4 Personal Website/3 Materials/3 Files/Python Project1_Yanchao Li.html 3/32

Symbol Security
SEC

filings GICS Sector
GICS Sub-

Industry
Headquarters

Location

Date
first

added

0 MMM 3M reports Industrials Industrial
Conglomerates

Saint Paul,
Minnesota

1976-
08-09

66

1 AOS A. O. Smith reports Industrials Building
Products

Milwaukee,
Wisconsin

2017-
07-26

91

2 ABT Abbott reports Health Care
Health Care
Equipment

North
Chicago,

Illinois

1964-
03-31 18

3 ABBV AbbVie reports Health Care Pharmaceuticals
North

Chicago,
Illinois

2012-
12-31 1551

4 ABMD Abiomed reports Health Care Health Care
Equipment

Danvers,
Massachusetts

2018-
05-31

8150

...

498 YUM Yum! Brands reports Consumer
Discretionary

Restaurants Louisville,
Kentucky

1997-
10-06

1041

499 ZBRA
Zebra

Technologies reports
Information
Technology

Electronic
Equipment &
Instruments

Lincolnshire,
Illinois

2019-
12-23 877

500 ZBH Zimmer Biomet reports Health Care Health Care
Equipment

Warsaw,
Indiana

2001-
08-07

11368

501 ZION Zions
Bancorporation

reports Financials Regional Banks Salt Lake City,
Utah

2001-
06-22

1093

502 ZTS Zoetis reports Health Care Pharmaceuticals Parsippany,
New Jersey

2013-
06-21

1555

503 rows × 9 columns

Code Explanation:

Define the function to convert daily data to monthly data and take the value of the last

day.

Code Explanation:

Define the function to choose the three stocks from chosen industries:

 tickers['Symbol'][i] == 'BF-B'

display(tickers)

In [5]: def get_monthly_prices(stocks_data):
 stocks_data.index = pd.to_datetime(stocks_data.index)
 stocks_data['year'] = stocks_data.index.year
 stocks_data['month'] = stocks_data.index.month
 stocks_data = stocks_data.set_index([stocks_data['year'], stocks_data['mont
 stocks_data = stocks_data.groupby([stocks_data['year'], stocks_data['month

4/6/25, 12:03 PM Final Project_Sharpe

file:///Users/PC/Desktop/Forging Tomorrow/1 All Materials/4 Personal Website/3 Materials/3 Files/Python Project1_Yanchao Li.html 4/32

Download the stocks corresponding to the sector from yahoo finance.

(Data Source: https://finance.yahoo.com/)

Use function mentioned above to adjusted closing prices.

Calculate the return of the stock in log form.

Calculate chosen stock's mean & standard deviation & Sharp ratio.

Define the function is to choose the three stocks from each stable industries.

Code Explanation:

Define the function to get the return of stock in form of log:

Download the chosen stocks from yahoo finance.

(Data Source: https://finance.yahoo.com/)

Use function mentioned above to adjusted closing prices.

Calculate the return of the stock in log form.

In [6]: def choose_stocks(stable_indus, chosen_stock1):
 # Download the stocks corresponding to the sector from yahoo finance.
 for j in range(len(stable_indus)):
 sector = tickers.loc[tickers['GICS Sector'] == stable_indus[int('{}'.fo
 prices = yf.download(sector, start = start_time, end = end_time)['Adj C
 prices = prices.dropna(axis = 1)
 sector = prices.columns.values

 # Use function mentioned above to adjusted closing prices.
 get_monthly_prices(prices)

 # Calculate the return of the stock in log form.
 for i in sector:
 prices['ret_{}'.format(i)] = np.log(prices['{}'.format(i)]/prices[
 prices = prices.drop(columns = ['{}'.format(i)])

 # Calculate chosen stock's mean & standard deviation & Sharp ratio.
 stock_mean = prices.mean()
 stock_vol = prices.std()
 stock_sharpe_ratio = (stock_mean - rfrate) / stock_vol
 stock_sharpe_ratio = stock_sharpe_ratio.sort_values(ascending = False)

 # Define the function is to choose the three stocks from each stable in
 chosen_stock1.append(stock_sharpe_ratio.index[-1].split('_')[1])
 chosen_stock1.append(stock_sharpe_ratio.index[-2].split('_')[1])
 chosen_stock1.append(stock_sharpe_ratio.index[-3].split('_')[1])

In [7]: def get_stock_return(choosed_stocks, start_time1, end_time1):
 # Download the chosen stocks from yahoo finance.
 down_stocks = yf.download(choosed_stocks, start = start_time1, end = end_ti
 down_stocks = down_stocks.dropna(axis = 1)

 #Use function mentioned above to adjusted closing prices.
 down_stocks.index = pd.to_datetime(down_stocks.index)
 down_stocks['year'] = down_stocks.index.year
 down_stocks['month'] = down_stocks.index.month
 down_stocks = down_stocks.set_index([down_stocks['year'], down_stocks['mont
 down_stocks = down_stocks.groupby([down_stocks['year'], down_stocks['month

4/6/25, 12:03 PM Final Project_Sharpe

file:///Users/PC/Desktop/Forging Tomorrow/1 All Materials/4 Personal Website/3 Materials/3 Files/Python Project1_Yanchao Li.html 5/32

https://finance.yahoo.com/
https://finance.yahoo.com/

Code Explanation:

Arrange the returns of the 15 selected stocks into a Dataframe in the order of year and

month.

[*********************100%***********************] 30 of 30 completed

1 Failed download:
- CEG: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
[*********************100%***********************] 25 of 25 completed

2 Failed downloads:
- FOX: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- FOXA: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
[*********************100%***********************] 64 of 64 completed

3 Failed downloads:
- OGN: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- MRNA: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- CTLT: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
[*********************100%***********************] 76 of 76 completed

8 Failed downloads:
- CDAY: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- HPE: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- PAYC: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- QRVO: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- ANET: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- SEDG: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- KEYS: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- PYPL: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
[*********************100%***********************] 70 of 70 completed

5 Failed downloads:
- HWM: No data found for this date range, symbol may be delisted
- OTIS: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- CARR: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- FTV: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- IR: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
[*********************100%***********************] 15 of 15 completed

 # Calculate the return of the stock in log form.
 for i in choosed_stocks:
 down_stocks['ret_{}'.format(i)] = np.log(down_stocks['{}'.format(i)]/do
 down_stocks = down_stocks.drop(columns = ['{}'.format(i)])

 down_stocks.dropna(axis = 0, inplace = True)
 return down_stocks

In [8]: start_time = '2010-01-01'
end_time = '2013-12-31'
rfrate = np.log(1+0.01)

chosen_stock = []
choose_stocks(most_stable_indus, chosen_stock)
deal_stocks = get_stock_return(chosen_stock, start_time, end_time)

display(deal_stocks)

4/6/25, 12:03 PM Final Project_Sharpe

file:///Users/PC/Desktop/Forging Tomorrow/1 All Materials/4 Personal Website/3 Materials/3 Files/Python Project1_Yanchao Li.html 6/32

ret_SO ret_ED ret_DUK ret_T ret_VZ ret_LUMN ret_JNJ

year month

2010 2 -0.007213 -0.009015 0.003650 -0.021926 -0.016796 0.007616 0.009847

3 0.042822 0.041019 -0.001837 0.040677 0.069753 0.055593 0.034325

4 0.054341 0.014709 0.027797 0.029840 -0.055449 -0.038815 -0.013900 -

5 -0.055322 -0.045968 -0.035833 -0.069925 -0.048929 0.006429 -0.088865 -0

6 0.017581 0.011903 0.002503 -0.004537 0.018005 -0.009188 0.012952 -

7 0.072289 0.067724 0.066489 0.092891 0.118580 0.067050 -0.016560

8 0.037772 0.042707 0.018614 0.041161 0.016044 0.015046 -0.009205 -0

9 0.014880 0.014413 0.030383 0.056460 0.098599 0.107270 0.083087

10 0.028726 0.030633 0.027841 0.016321 0.011262 0.047510 0.028323

11 -0.003969 -0.015493 -0.023534 -0.025929 -0.014576 0.038170 -0.026393

12 0.013431 0.024506 0.014706 0.055638 0.111341 0.087985 0.004862

2011 1 -0.016085 0.006836 0.003923 -0.046229 0.008557 -0.065564 -0.034208 -

2 0.025110 0.013450 0.019739 0.030772 0.035846 -0.032134 0.036561 -

3 0.000000 0.014697 0.008854 0.075642 0.042943 0.008945 -0.036296

4 0.036340 0.027228 0.027176 0.035243 -0.007120 -0.018706 0.103638

5 0.026291 0.029023 0.018004 0.014040 -0.022755 0.057417 0.032244

6 0.007457 0.003386 0.004257 -0.004764 0.008090 -0.048904 -0.011509 -

7 -0.009186 -0.012093 -0.012290 -0.052742 -0.040528 -0.085686 -0.026352 -

8 0.045002 0.077608 0.030626 -0.027019 0.024630 -0.026209 0.024338 -

9 0.024126 0.014308 0.055541 0.001404 0.017267 -0.067281 -0.032592 -

10 0.019400 0.014796 0.021283 0.047638 0.018711 0.062612 0.010931

11 0.027304 0.036543 0.033002 -0.011323 0.020078 0.062125 0.014350 -

12 0.052784 0.042987 0.053689 0.042560 0.061419 0.011262 0.013200

2012 1 -0.015896 -0.050759 -0.031866 -0.008481 -0.050352 -0.004581 0.005019

2 -0.020054 -0.004410 -0.006775 0.039339 0.011878 0.083382 -0.003878 -

3 0.016607 0.005493 0.004293 0.020706 0.003143 -0.022226 0.013431

4 0.022230 0.017478 0.019793 0.071023 0.067824 -0.002331 -0.013124

5 0.010080 0.025358 0.036940 0.037572 0.030727 0.016971 -0.032191 -

6 0.008459 0.029867 0.047967 0.042682 0.065079 0.025519 0.078970

7 0.039179 0.036472 -0.020445 0.077869 0.026830 0.050610 0.024274

8 -0.050067 -0.052523 -0.033990 -0.034338 -0.049965 0.017184 -0.017154

9 0.016627 -0.012115 0.000154 0.028519 0.059446 -0.027987 0.021711

10 0.016141 0.008149 0.013795 -0.070784 -0.009662 -0.051293 0.027340 -

11 -0.062312 -0.068282 -0.016467 -0.013388 -0.011717 0.011914 -0.006707

4/6/25, 12:03 PM Final Project_Sharpe

file:///Users/PC/Desktop/Forging Tomorrow/1 All Materials/4 Personal Website/3 Materials/3 Files/Python Project1_Yanchao Li.html 7/32

ret_SO ret_ED ret_DUK ret_T ret_VZ ret_LUMN ret_JNJ

year month

12 -0.017138 -0.004491 -0.000314 -0.012382 -0.019453 0.026030 0.005292

2013 1 0.043696 0.023840 0.074578 0.048514 0.019417 0.033433 0.053061

2 0.017482 0.047413 0.018460 0.031686 0.064811 -0.154192 0.037163

3 0.041560 0.033828 0.047104 0.021488 0.054780 0.028466 0.068791

4 0.027537 0.042034 0.035324 0.036565 0.102885 0.067150 0.044383 -

5 -0.083413 -0.099082 -0.105834 -0.068212 -0.106165 -0.080401 -0.004907

6 0.005226 0.021495 0.008481 0.011649 0.037649 0.034536 0.019761

7 0.015961 0.026903 0.050552 0.013089 -0.007142 0.014046 0.085243 0

8 -0.063148 -0.052975 -0.068029 -0.041685 -0.043368 -0.079206 -0.071352 -

9 -0.010628 -0.019575 0.017828 -0.000295 -0.015099 -0.037422 0.003235

10 0.005595 0.054353 0.071505 0.085685 0.090341 0.076064 0.066059

11 -0.006868 -0.042526 -0.014050 -0.027729 -0.017778 -0.080845 0.028851

12 0.009065 0.000362 -0.012225 -0.000284 -0.009517 0.040223 -0.025247

Code Explanation:

Define two functions to calculate the portfolio mean and standard deviation separately.

Code Explanation:

Perform 100,000 simulations on 15 stocks to find the weight of each stock that the

portfolio has the highest Sharpe Ratio:

Generate 15 weights for 15 stocks randomly.

Calculate the expected return and standard deviation of the portfolio.

Calculate the Sharpe ratio of each stock and find the highest portfolio.

Plot the pie charts.

Print out the final result.

In [9]: # Define the function to calculate the mean and standard deviation separately
def total_return(weights, calculated_stocks):
 return np.sum((weights * calculated_stocks.mean()) * 12)

def total_vol(weights, calculated_stocks):
 return math.sqrt(np.dot(weights.T, np.dot(calculated_stocks.cov() * 12, wei

In [10]: best_weight = []
best_sharpe = 0
stock_return = []
stock_vol = []

for j in range(0,100000):
 # Generate 15 weights for 15 stocks randomly
 weight = np.random.random(stocks_number)

4/6/25, 12:03 PM Final Project_Sharpe

file:///Users/PC/Desktop/Forging Tomorrow/1 All Materials/4 Personal Website/3 Materials/3 Files/Python Project1_Yanchao Li.html 8/32

The tangency portfolio invests 2.8% into SO, 5.9% into ED, 14.6% into DUK, 6.
1% into T, 14.5% into VZ, 0.5% into LUMN, 4.4% into JNJ, 2.1% into BDX, 0.8% i
nto ABT, 14.8% into ADP, 5.7% into PAYX, 6.9% into IBM, 16.2% into LMT, 0.8% i
nto WM, and 3.8% into UPS achieving a volatility 9.30% and expected return of
16.75% for a Sharpe Ratio of 1.694.

 weight /= np.sum(weight)

 # Calculate the expected return and standard deviation of the portfolio
 stock_return.append(total_return(weight, deal_stocks))
 stock_vol.append(total_vol(weight, deal_stocks))

 # Calculate the sharpe ratio of each stock and find the highest portfolio
 sharpe_ratio = (total_return(weight, deal_stocks) - rfrate) / total_vol(wei
 if sharpe_ratio >= best_sharpe:
 best_sharpe = sharpe_ratio
 best_weight = weight

best_return = total_return(best_weight, deal_stocks)
best_vol = total_vol(best_weight, deal_stocks)
best_sharpe_ratio = (best_return - rfrate) / best_vol

Plot the pie charts
plt.rcParams['figure.figsize'] = [12,8]
plt.pie(best_weight, explode = np.ones(15)*0.1, labels = chosen_stock, autopct
plt.title('Portfolio Weight Allocation')
plt.show()

Print out the final result
print(f'The tangency portfolio invests {best_weight[0]:.1%} into {chosen_stock

4/6/25, 12:03 PM Final Project_Sharpe

file:///Users/PC/Desktop/Forging Tomorrow/1 All Materials/4 Personal Website/3 Materials/3 Files/Python Project1_Yanchao Li.html 9/32

Return Volatility Sharpe Ratio

Result 0.167513 0.093017 1.693908

3. Rebalance Plan & Back Test Strategy

In this section, we completed the backtesting of our investment strategy:

1. In the first two sections, we have selected the sectors and stocks to invest

in and obtained the weights of each stock in the optimal portfolio. We

proceeded with the same weights for January to December of 2014 and

calculated monthly profits or losses. Our assumptions are as follows: we

invest 100,000 dollars per month, allocating the investment size of 10

stocks according to their weights of them. We assume we will purchase

stocks at the beginning of the month and sell them at the end. The

In [11]: result_shown = pd.DataFrame([[best_return, best_vol, best_sharpe_ratio]],column
result_shown.index = ['Result']
display(result_shown)

plt.rcParams['figure.figsize'] = [10,6]
plt.scatter(stock_vol , stock_return, marker = '.', label='Portfolio')
plt.plot(np.array([0, best_vol]), np.array([rfrate, best_return]), label='CML')
plt.plot(best_vol,best_return,'o',label='Tangency')
plt.text(best_vol,best_return,(round(best_vol,3),round(best_return,3)), ha = 'c
plt.grid('on')
plt.legend(loc='lower right')
plt.xlabel('Volatility')
plt.ylabel('Expected Return')
plt.show()

4/6/25, 12:03 PM Final Project_Sharpe

file:///Users/PC/Desktop/Forging Tomorrow/1 All Materials/4 Personal Website/3 Materials/3 Files/Python Project1_Yanchao Li.html 10/32

difference in the total value of the stocks at the time of sale with the initial

capital of 100,000 dollars is our profit or loss.

2. For each year after that until the end of 2021, we first repeated the

previous two sections, re-performing the selection of sectors and stocks

and assigning selected stocksʼ weights. Then we repeated the operations of

each month in 2014 as above, calculating the monthly profits and losses.

3. We added up the profits or losses for each stock for twelve months of one

year to get the annualized data. As shown in the figure, we finally calculated

the returns for the eight years from 2014 to 2021 as 23.13%, 0.45%,

18.30%, 12.85%, 4.30%, 32.43%, 6.15%, and 21.49%.

Code Explanation:

Backtest gains and losses from 2014-2021 using trading strategies developed from

2010-2013:

Use loops to obtain information about the year and download stock data for the set

time

From January 2014 to December 2021, calculate the monthly losses and gains and

add the final results to total_output

Obtain information on the development of sectors in the last three years and

reselect the five most stable sectors

Download the stocks corresponding to the most stable sectors and reselect the

three stocks with the highest Sharpe Ratio from each sector

Use the function to re-simulate the release of weight and find the combination with

the largest Sharpe ratio.

Record sector selection, stock selection, and weight allocation for each year from

2014 to 2021

In [12]: total_output = []
weight_2014to2021 = []
stock_2014to2021 = []
indus_2014to2021 = []

Use loops to obtain information about the year and download stock data for th
for j in np.arange(2014,2022,1):
 years = [j, j]
 months = [1, 12]
 days = [1, 31]
 date = pd.to_datetime({'years': years, 'month': months, 'day': days})
 used_stocks = yf.download(chosen_stock, start = date[0], end = date[1])['Ad

 # From January 2014 to December 2021, calculate the monthly losses and gain
 for k in np.arange(1,13):
 used_stocks['month'] = used_stocks.index.month
 used_data = used_stocks.loc[used_stocks['month'] == k]
 used_data.reset_index(inplace = True)
 used_data.drop(columns = ['month','Date'], inplace = True)

4/6/25, 12:03 PM Final Project_Sharpe

file:///Users/PC/Desktop/Forging Tomorrow/1 All Materials/4 Personal Website/3 Materials/3 Files/Python Project1_Yanchao Li.html 11/32

[*********************100%***********************] 15 of 15 completed
D:\Anaconda3-2021.11-Windows-x86_64\Anaconda\lib\site-packages\pandas\core\fra
me.py:4906: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user_guide/indexing.html#returning-a-view-versus-a-copy
 return super().drop(

 sum_output = np.sum(best_weight * 100000 / np.array(used_data[0:1])[0]
 total_output.append(round(sum_output,2))

 # Obtain information on the development of sectors in the last three years
 year = [j-2, j]
 date = pd.to_datetime({'years': years, 'month': months, 'day': days})

 loc_start = '{}01'.format(year[0])
 loc_end = '{}31'.format(year[1])
 most_stable_indus = get_stable_sectors(loc_start, loc_end)

 # Download the stocks corresponding to the most stable sectors and reselect
 chosen_stock = []
 choose_stocks(most_stable_indus, chosen_stock)
 chosen_stock_return = get_stock_return(chosen_stock, date[0], date[1])

 # Use the function to re-simulate the release of weight and find the combin
 new_sharpe_ratio = 0
 for l in range(0,100000):
 weight = np.random.random(stocks_number)
 weight /= np.sum(weight)

 sharpe_ratio = (total_return(weight, chosen_stock_return) - rfrate) / t
 if sharpe_ratio >= new_sharpe_ratio:
 new_sharpe_ratio = sharpe_ratio
 best_weight = weight

 # Record sector selection, stock selection and weight allocation for each y
 weight_2014to2021.append(best_weight)
 stock_2014to2021.append(chosen_stock)
 indus_2014to2021.append(most_stable_indus)

4/6/25, 12:03 PM Final Project_Sharpe

file:///Users/PC/Desktop/Forging Tomorrow/1 All Materials/4 Personal Website/3 Materials/3 Files/Python Project1_Yanchao Li.html 12/32

[*********************100%***********************] 25 of 25 completed

2 Failed downloads:
- FOX: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- FOXA: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
[*********************100%***********************] 70 of 70 completed

5 Failed downloads:
- HWM: No data found for this date range, symbol may be delisted
- OTIS: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- CARR: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- FTV: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- IR: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
[*********************100%***********************] 76 of 76 completed

8 Failed downloads:
- CDAY: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- HPE: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- PAYC: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- QRVO: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- ANET: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- SEDG: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- KEYS: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- PYPL: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
[*********************100%***********************] 30 of 30 completed

1 Failed download:
- CEG: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
[*********************100%***********************] 28 of 28 completed

3 Failed downloads:
- WRK: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- CTVA: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- DOW: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
[*********************100%***********************] 15 of 15 completed
[*********************100%***********************] 15 of 15 completed
D:\Anaconda3-2021.11-Windows-x86_64\Anaconda\lib\site-packages\pandas\core\fra
me.py:4906: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user_guide/indexing.html#returning-a-view-versus-a-copy
 return super().drop(

4/6/25, 12:03 PM Final Project_Sharpe

file:///Users/PC/Desktop/Forging Tomorrow/1 All Materials/4 Personal Website/3 Materials/3 Files/Python Project1_Yanchao Li.html 13/32

[*********************100%***********************] 76 of 76 completed

8 Failed downloads:
- HPE: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- CDAY: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- PAYC: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- QRVO: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- ANET: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- SEDG: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- KEYS: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- PYPL: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
[*********************100%***********************] 30 of 30 completed

1 Failed download:
- CEG: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
[*********************100%***********************] 25 of 25 completed

2 Failed downloads:
- FOX: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- FOXA: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
[*********************100%***********************] 70 of 70 completed

5 Failed downloads:
- HWM: No data found for this date range, symbol may be delisted
- OTIS: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- CARR: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- FTV: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- IR: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
[*********************100%***********************] 64 of 64 completed

3 Failed downloads:
- OGN: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- MRNA: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- CTLT: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
[*********************100%***********************] 15 of 15 completed
[*********************100%***********************] 15 of 15 completed
D:\Anaconda3-2021.11-Windows-x86_64\Anaconda\lib\site-packages\pandas\core\fra
me.py:4906: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user_guide/indexing.html#returning-a-view-versus-a-copy
 return super().drop(

4/6/25, 12:03 PM Final Project_Sharpe

file:///Users/PC/Desktop/Forging Tomorrow/1 All Materials/4 Personal Website/3 Materials/3 Files/Python Project1_Yanchao Li.html 14/32

[*********************100%***********************] 30 of 30 completed

1 Failed download:
- CEG: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
[*********************100%***********************] 25 of 25 completed

2 Failed downloads:
- FOX: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- FOXA: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
[*********************100%***********************] 64 of 64 completed

3 Failed downloads:
- OGN: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- MRNA: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- CTLT: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
[*********************100%***********************] 76 of 76 completed

8 Failed downloads:
- CDAY: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- HPE: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- PAYC: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- QRVO: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- ANET: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- SEDG: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- KEYS: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- PYPL: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
[*********************100%***********************] 70 of 70 completed

5 Failed downloads:
- HWM: No data found for this date range, symbol may be delisted
- OTIS: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- CARR: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- FTV: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- IR: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
[*********************100%***********************] 15 of 15 completed
[*********************100%***********************] 15 of 15 completed
D:\Anaconda3-2021.11-Windows-x86_64\Anaconda\lib\site-packages\pandas\core\fra
me.py:4906: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user_guide/indexing.html#returning-a-view-versus-a-copy
 return super().drop(

4/6/25, 12:03 PM Final Project_Sharpe

file:///Users/PC/Desktop/Forging Tomorrow/1 All Materials/4 Personal Website/3 Materials/3 Files/Python Project1_Yanchao Li.html 15/32

[*********************100%***********************] 30 of 30 completed

1 Failed download:
- CEG: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
[*********************100%***********************] 64 of 64 completed

3 Failed downloads:
- OGN: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- MRNA: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- CTLT: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
[*********************100%***********************] 25 of 25 completed

2 Failed downloads:
- FOX: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- FOXA: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
[*********************100%***********************] 76 of 76 completed

8 Failed downloads:
- CDAY: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- HPE: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- PAYC: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- QRVO: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- ANET: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- SEDG: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- KEYS: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- PYPL: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
[*********************100%***********************] 70 of 70 completed

5 Failed downloads:
- HWM: No data found for this date range, symbol may be delisted
- OTIS: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- CARR: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- FTV: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- IR: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
[*********************100%***********************] 15 of 15 completed
[*********************100%***********************] 15 of 15 completed
D:\Anaconda3-2021.11-Windows-x86_64\Anaconda\lib\site-packages\pandas\core\fra
me.py:4906: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user_guide/indexing.html#returning-a-view-versus-a-copy
 return super().drop(

4/6/25, 12:03 PM Final Project_Sharpe

file:///Users/PC/Desktop/Forging Tomorrow/1 All Materials/4 Personal Website/3 Materials/3 Files/Python Project1_Yanchao Li.html 16/32

[*********************100%***********************] 30 of 30 completed

1 Failed download:
- CEG: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
[*********************100%***********************] 25 of 25 completed

2 Failed downloads:
- FOX: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- FOXA: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
[*********************100%***********************] 76 of 76 completed

8 Failed downloads:
- CDAY: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- HPE: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- PAYC: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- QRVO: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- ANET: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- SEDG: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- KEYS: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- PYPL: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
[*********************100%***********************] 64 of 64 completed

3 Failed downloads:
- OGN: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- MRNA: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- CTLT: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
[*********************100%***********************] 28 of 28 completed

3 Failed downloads:
- WRK: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- CTVA: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- DOW: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
[*********************100%***********************] 15 of 15 completed
[*********************100%***********************] 15 of 15 completed
D:\Anaconda3-2021.11-Windows-x86_64\Anaconda\lib\site-packages\pandas\core\fra
me.py:4906: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user_guide/indexing.html#returning-a-view-versus-a-copy
 return super().drop(

4/6/25, 12:03 PM Final Project_Sharpe

file:///Users/PC/Desktop/Forging Tomorrow/1 All Materials/4 Personal Website/3 Materials/3 Files/Python Project1_Yanchao Li.html 17/32

[*********************100%***********************] 30 of 30 completed

1 Failed download:
- CEG: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
[*********************100%***********************] 25 of 25 completed

2 Failed downloads:
- FOX: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- FOXA: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
[*********************100%***********************] 67 of 67 completed

3 Failed downloads:
- BRK.B: No data found for this date range, symbol may be delisted
- CFG: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- SYF: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
[*********************100%***********************] 76 of 76 completed

8 Failed downloads:
- CDAY: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- HPE: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- PAYC: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- QRVO: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- ANET: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- SEDG: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- KEYS: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- PYPL: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
[*********************100%***********************] 64 of 64 completed

3 Failed downloads:
- OGN: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- MRNA: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- CTLT: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
[*********************100%***********************] 15 of 15 completed
[*********************100%***********************] 15 of 15 completed
D:\Anaconda3-2021.11-Windows-x86_64\Anaconda\lib\site-packages\pandas\core\fra
me.py:4906: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user_guide/indexing.html#returning-a-view-versus-a-copy
 return super().drop(

4/6/25, 12:03 PM Final Project_Sharpe

file:///Users/PC/Desktop/Forging Tomorrow/1 All Materials/4 Personal Website/3 Materials/3 Files/Python Project1_Yanchao Li.html 18/32

[*********************100%***********************] 30 of 30 completed

1 Failed download:
- CEG: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
[*********************100%***********************] 25 of 25 completed

2 Failed downloads:
- FOX: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- FOXA: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
[*********************100%***********************] 76 of 76 completed

8 Failed downloads:
- CDAY: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- HPE: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- PAYC: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- QRVO: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- ANET: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- SEDG: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- KEYS: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- PYPL: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
[*********************100%***********************] 64 of 64 completed

3 Failed downloads:
- OGN: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- MRNA: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- CTLT: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
[*********************100%***********************] 67 of 67 completed

3 Failed downloads:
- BRK.B: No data found for this date range, symbol may be delisted
- CFG: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- SYF: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
[*********************100%***********************] 15 of 15 completed
[*********************100%***********************] 15 of 15 completed
D:\Anaconda3-2021.11-Windows-x86_64\Anaconda\lib\site-packages\pandas\core\fra
me.py:4906: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user_guide/indexing.html#returning-a-view-versus-a-copy
 return super().drop(

4/6/25, 12:03 PM Final Project_Sharpe

file:///Users/PC/Desktop/Forging Tomorrow/1 All Materials/4 Personal Website/3 Materials/3 Files/Python Project1_Yanchao Li.html 19/32

[*********************100%***********************] 30 of 30 completed

1 Failed download:
- CEG: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
[*********************100%***********************] 25 of 25 completed

2 Failed downloads:
- FOX: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- FOXA: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
[*********************100%***********************] 64 of 64 completed

3 Failed downloads:
- OGN: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- MRNA: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- CTLT: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
[*********************100%***********************] 76 of 76 completed

8 Failed downloads:
- CDAY: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- HPE: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- PAYC: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- QRVO: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- ANET: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- SEDG: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- KEYS: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- PYPL: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
[*********************100%***********************] 33 of 33 completed

3 Failed downloads:
- BF.B: No data found for this date range, symbol may be delisted
- KHC: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
- LW: Data doesn't exist for startDate = 1262322000, endDate = 1388466000
[*********************100%***********************] 15 of 15 completed

Code Explanation:

Calculation of gains and losses on an annual basis.

In [13]: profit_or_loss = np.array(total_output)/100000
yearly_situation = []

for i in range(0, len(profit_or_loss), 12):
 yearly_situation.append(np.sum(profit_or_loss[i:i+12])-12)

print(f'The return of 1st year is {yearly_situation[0]:.2%}.')
print(f'The return of 2nd year is {yearly_situation[1]:.2%}.')
print(f'The return of 3rd year is {yearly_situation[2]:.2%}.')
print(f'The return of 4th year is {yearly_situation[3]:.2%}.')
print(f'The return of 5th year is {yearly_situation[4]:.2%}.')
print(f'The return of 6th year is {yearly_situation[5]:.2%}.')
print(f'The return of 7th year is {yearly_situation[6]:.2%}.')
print(f'The return of 8th year is {yearly_situation[7]:.2%}.')

4/6/25, 12:03 PM Final Project_Sharpe

file:///Users/PC/Desktop/Forging Tomorrow/1 All Materials/4 Personal Website/3 Materials/3 Files/Python Project1_Yanchao Li.html 20/32

The return of 1st year is 23.13%.
The return of 2nd year is 0.45%.
The return of 3rd year is 18.30%.
The return of 4th year is 12.85%.
The return of 5th year is 4.30%.
The return of 6th year is 32.43%.
The return of 7th year is 6.15%.
The return of 8th year is 21.49%.

4. Simulation

In this section, we completed the simulation of our investment strategy:

1. We collated the monthly historical data and investment weight allocation

results of the selected stocks of backtest, read the data from 2017 to 2021

into the notebook, transformed the simple return of each stock into log return

for each month, calculated returnsʼ mean and standard deviation, and the

covariance between stocksʼ mean return. Displayed the data at the end of

December 2021.

2. We simulated the new price and return of each stock using the previously

calculated mean and covariance of each stock and the year-end data of 2021.

In [14]: plt.plot(np.arange(1,9), yearly_situation,'ro')
for i,j in zip(np.arange(1,9), yearly_situation):
 plt.text(i, j, (i,round(j,3)), ha = 'center', va = 'bottom', fontsize = 10)
plt.title('Investment Situation from 2014 to 2021')
plt.xlabel('Year')
plt.ylabel('Profit or Loss(%)')
plt.grid('on')
plt.show()

4/6/25, 12:03 PM Final Project_Sharpe

file:///Users/PC/Desktop/Forging Tomorrow/1 All Materials/4 Personal Website/3 Materials/3 Files/Python Project1_Yanchao Li.html 21/32

3. 10,000 simulations calculate the cumulative returns of each stock, and

the histograms of the cumulative returns and losses of the portfolio for twelve

months with and without stop loss levels set are plotted separately. As shown

in the figure, the expected cumulative log return (12 months) without a

stop loss is 23.14%, and the expected cumulative log return with a stop

loss of -15.00% is 21.72.

Code Explanation:

Adjust the data form:

Adjust the form of the Dataframe and put the weight of the matching year.

(Data Source: https://wrds-www.wharton.upenn.edu/)

Sort and reset the index

Calculate log returns from the simple returns.

In [15]: stockdata = pd.read_excel('fifteen_choosen_stocks.xlsx',parse_dates=['date'])

Adjust the form of the dataframe and put the weight of the matching year.
stockdata['year'] = stockdata['date'].dt.year
stockdata.sort_values(['TICKER','year'],inplace=True)
stockdata.set_index(['TICKER','year'],inplace=True)
stockdata['weight'] = 1

for i in np.arange(2,8):
 for j in np.arange(0,15):
 stockdata.loc[(stock_2014to2021[i][j], 'weight')] = weight_2014to2021[i

Sort and reset the index
stockdata.reset_index(inplace=True)
stockdata.drop(columns = ['year'])
stockdata.sort_values(['TICKER','date'],inplace=True)
stockdata.set_index(['TICKER','date'],inplace=True)

Calculate log returns from the simple returns
stockdata['log_ret'] = np.log(1+stockdata['RET'])
display(stockdata)

4/6/25, 12:03 PM Final Project_Sharpe

file:///Users/PC/Desktop/Forging Tomorrow/1 All Materials/4 Personal Website/3 Materials/3 Files/Python Project1_Yanchao Li.html 22/32

https://wrds-www.wharton.upenn.edu/

year PRC RET weight log_ret

TICKER date

ABT 2016-01-29 2016 37.85 -0.151414 0.034108 -0.164184

2016-02-29 2016 38.74 0.023514 0.034108 0.023242

2016-03-31 2016 41.83 0.079763 0.034108 0.076742

2016-04-29 2016 38.90 -0.063830 0.034108 -0.065958

2016-05-31 2016 39.63 0.018766 0.034108 0.018592

...

WRB 2020-08-31 2020 62.05 0.004858 0.013944 0.004846

2020-09-30 2020 61.15 -0.012570 0.013944 -0.012650

2020-10-30 2020 60.12 -0.016844 0.013944 -0.016987

2020-11-30 2020 65.13 0.083333 0.013944 0.080042

2020-12-31 2020 66.42 0.021649 0.013944 0.021418

1080 rows × 5 columns

Code Explanation:

Calculate means and standard deviation of stock returns and build correlation matrix:

Get a DataFrame that is only the log return column

Unstack into a wide matrix, so each column is one TICKER

Calculate the covariance matrix

Get the last entry for each stock used to the start point for our simulation

In [16]: # Get a DataFrame that is only the log return column
rets_long = stockdata[['log_ret']]
sum_stats = rets_long[['log_ret']].groupby('TICKER').agg(['mean','std'])
print()
print('******Summary Stats for monthly log returns(%):********')
display(100*sum_stats)

Unstack into a wide matrix so each column is one TICKER
rets_wide = stockdata['log_ret'].unstack('TICKER')

Calculate the covariance matrix
cov_mat = rets_wide.cov()
cov_mat = cov_mat.fillna(0)
print()
print('****************Covariance matrix:****************')
display(cov_mat)

Get the last entry for each stock uesd to start point for our simulation
last_stock_data = stockdata.groupby("TICKER").last()
last_stock_data['time'] = 0
last_stock_data.reset_index(inplace=True)
last_stock_data.set_index(['time','TICKER'],inplace=True)
last_stock_data = last_stock_data[['PRC','RET','weight']]

4/6/25, 12:03 PM Final Project_Sharpe

file:///Users/PC/Desktop/Forging Tomorrow/1 All Materials/4 Personal Website/3 Materials/3 Files/Python Project1_Yanchao Li.html 23/32

******Summary Stats for monthly log returns(%):********
log_ret

mean std

TICKER

ABT 1.741478 5.774377

ACGL 1.250199 10.360056

ADP 1.662842 5.586118

BALL -1.404164 10.252809

BDX 0.795880 5.834388

DUK 0.888242 4.828171

ECL 0.877189 4.741696

ED 0.703716 5.048302

IBM 0.390621 7.160256

JNJ 0.534144 4.616698

KMB 0.761969 4.634531

L 0.002041 8.569244

LIN -1.035865 5.569461

LMT 1.852657 3.358458

LUMN -0.190274 9.581359

PAYX 1.571092 5.855202

PEP 1.548951 5.669533

PG 1.555245 5.463064

SO 0.911734 5.186719

T 0.036536 5.475443

UPS 1.136278 3.516288

VZ 0.931984 4.701235

WM 2.200509 2.996059

WRB 1.381866 7.065112

****************Covariance matrix:****************

print('****************Last Date Data:****************')
display(last_stock_data)

4/6/25, 12:03 PM Final Project_Sharpe

file:///Users/PC/Desktop/Forging Tomorrow/1 All Materials/4 Personal Website/3 Materials/3 Files/Python Project1_Yanchao Li.html 24/32

TICKER ABT ACGL ADP BALL BDX DUK ECL ED

TICKER

ABT 0.003334 0.000038 0.000596 0.003290 0.001680 0.000635 0.001039 0.000540

ACGL 0.000038 0.010733 0.002429 0.000000 0.001553 0.002199 0.000000 0.000653 0

ADP 0.000596 0.002429 0.003120 0.004370 0.000646 0.000544 0.001990 0.000566

BALL 0.003290 0.000000 0.004370 0.010512 0.006184 0.001360 0.003537 0.002225

BDX 0.001680 0.001553 0.000646 0.006184 0.003404 0.000938 0.002662 0.001101

DUK 0.000635 0.002199 0.000544 0.001360 0.000938 0.002331 0.000690 0.001962

ECL 0.001039 0.000000 0.001990 0.003537 0.002662 0.000690 0.002248 0.001148

ED 0.000540 0.000653 0.000566 0.002225 0.001101 0.001962 0.001148 0.002549

IBM 0.001940 0.003583 0.001383 0.004981 0.002101 0.000820 0.002102 0.000745

JNJ 0.000563 0.000225 0.001000 0.003761 0.000824 0.000981 0.001652 0.001126

KMB 0.000822 0.000000 0.001009 0.000000 0.000918 0.001685 0.000000 0.001744

L 0.001052 0.006094 0.002594 0.000000 0.002360 0.001570 0.000000 0.000820

LIN 0.001641 0.000000 0.000898 0.002954 0.002064 0.000461 0.000386 0.000512

LMT 0.000445 0.000000 0.000074 0.000000 0.000329 0.000067 0.000000 -0.000043

LUMN 0.001292 0.002855 0.001437 0.004534 0.000896 0.000443 0.002870 0.000253

PAYX 0.001128 0.004159 0.002381 0.003743 0.000933 0.000876 0.001311 0.000672

PEP 0.000749 0.000000 0.002284 0.000000 0.000812 0.002612 0.000000 0.002589

PG 0.000682 0.000000 0.001999 0.000000 0.000915 0.002231 0.000000 0.002548

SO 0.000690 0.003150 0.000836 0.001741 0.001115 0.001981 0.000555 0.001966

T 0.000826 0.003961 0.001086 0.001587 0.000979 0.000985 0.000985 0.000730

UPS 0.000341 0.000000 0.000315 0.000000 0.000144 -0.000152 0.000000 -0.000137

VZ 0.001432 0.000713 0.000773 0.003682 0.001365 0.001101 0.001644 0.001022

WM 0.000279 0.000000 0.000660 0.000000 -0.000093 0.000407 0.000000 0.000368

WRB 0.001375 0.005993 0.002113 0.000000 0.001871 0.002385 0.000000 0.001344

24 rows × 24 columns

****************Last Date Data:****************

4/6/25, 12:03 PM Final Project_Sharpe

file:///Users/PC/Desktop/Forging Tomorrow/1 All Materials/4 Personal Website/3 Materials/3 Files/Python Project1_Yanchao Li.html 25/32

PRC RET weight

time TICKER

0 ABT 140.74001 0.119027 0.034108

ACGL 36.07000 0.120360 0.012373

ADP 246.58000 0.072459 0.186837

BALL 97.53000 -0.154046 0.195171

BDX 251.48000 0.064139 0.005179

DUK 104.90000 0.081332 0.012076

ECL 147.35001 -0.079008 0.005511

ED 85.32000 0.098918 0.055206

IBM 133.66000 0.141418 0.008973

JNJ 51.96000 0.033618 0.000823

KMB 142.92000 0.105518 0.114426

L 45.02000 0.074207 0.004952

LIN 26.72000 -0.066387 0.087932

LMT 321.04999 0.006048 0.152054

LUMN 12.55000 0.017018 0.026864

PAYX 136.50000 0.145134 0.175231

PEP 173.71001 0.093910 0.121907

PG 163.58000 0.131415 0.173848

SO 68.58000 0.122422 0.048768

T 24.60000 0.077530 0.025007

UPS 119.15000 -0.018938 0.171677

VZ 171.07001 0.097095 0.010747

WM 86.30000 0.049240 0.126254

WRB 66.42000 0.021649 0.013944

Code Explanation:

Define two functions to generate CRSP-style data with a (time, TICKER) MultiIndex:

Generate num_periods simple returns for each stock in the

sum_stats/cov_mat dataframes:

Simulate log returns

Unlock them into the simple returns and put them into a nice DataFrame,

setting the time index to 1:num_periods

Generates CRSP-style data with a (time, TICKER) MultiIndex:

Call the function above to generate num_periods simple returns for each stock.

Calculate the simulated prices from the simulated returns

4/6/25, 12:03 PM Final Project_Sharpe

file:///Users/PC/Desktop/Forging Tomorrow/1 All Materials/4 Personal Website/3 Materials/3 Files/Python Project1_Yanchao Li.html 26/32

Generates the prices at period 1:num_periods, starting from the last prices in

the data

Take the wide RET and PRC data, and stack them into a MultiIndex with time

and TICKER

Merge the RET, PRC, and weight columns for 1:num_periods

Concatenate the last observation from each stock with our simulated data

Code Explanation:

Perform 10,000 simulations to find the gains and losses of the release:

Generate the simulated data and calculate weights

Store the last cumulative return (the 12-month return):

Hit the stop-loss level, so find the first one and store it

Didn't hit our loss level, so use the cumulative return at month 12

Plot histogram

In [17]: rng = np.random.default_rng()

Generate num_periods *simple* returns for each stock in the sum_stats/cov_mat
def sim_period_returns(num_periods):
 # Simulate log returns
 sim_log_rets = rng.multivariate_normal(sum_stats[('log_ret','mean')],cov_ma
 # Unlog them into the simple returns and put into a nice DataFrame, setting
 sim_simple_rets = pd.DataFrame(np.exp(sim_log_rets)-1,columns=cov_mat.colum
 index=pd.Index(np.arange(1,num

 return sim_simple_rets

Generates CRSP-style data, with a (time,TICKER) MultiIndex
def gen_sim_data(num_periods):
 # Call the function above to generate num_periods simple returns for each s
 sim_simple_rets = sim_period_returns(num_periods)

 # Calculate the simulated prices from the simulated returns
 lsd = last_stock_data.reset_index()
 last_prices = lsd.pivot('time','TICKER','PRC')

 # Generates the prices at period 1:num_periods, starting from the last pric
 sim_prices = np.array(last_prices)*(1+sim_simple_rets).cumprod(axis=0)

 # Take the wide RET and PRC data, and stack them into a MultiIndex with tim
 sim_simple_rets = pd.DataFrame(sim_simple_rets.stack(),columns=["RET"])
 sim_prices = pd.DataFrame(sim_prices.stack(),columns=["PRC"])

 # Merge the RET, PRC, and weight columns for 1:num_periods
 all_sim_data = sim_prices.merge(sim_simple_rets,left_index=True,right_index
 all_sim_data.reset_index(inplace=True)
 all_sim_data = all_sim_data.merge(last_stock_data[['weight']],left_on='TICK

 # Concatenate the last observation from each stock with our simulated data
 all_sim_data = pd.concat([lsd,all_sim_data],axis=0)
 all_sim_data.sort_values(['time','TICKER'],inplace=True)
 all_sim_data.set_index(['time','TICKER'],inplace=True)
 return all_sim_data

4/6/25, 12:03 PM Final Project_Sharpe

file:///Users/PC/Desktop/Forging Tomorrow/1 All Materials/4 Personal Website/3 Materials/3 Files/Python Project1_Yanchao Li.html 27/32

C:\Users\PC\AppData\Local\Temp/ipykernel_12224/1343334264.py:6: RuntimeWarnin
g: covariance is not positive-semidefinite.
 sim_log_rets = rng.multivariate_normal(sum_stats[('log_ret','mean')],cov_ma
t,size=num_periods)

In [18]: stop_loss = -0.15
num_periods = 12
N_sims = 10_000
all_cum_log_returns = np.zeros(N_sims)
cum_log_returns_stop = np.zeros(N_sims)
for sim_num in np.arange(N_sims):
 # Generate the simulated data
 sim_data = gen_sim_data(num_periods)
 sim_data.drop(0,inplace=True)

 # Calculate weights
 sim_data['weight_ret'] = sim_data.RET * sim_data.weight
 port_log_returns = np.log(1+sim_data.groupby('time')['weight_ret'].sum())
 cum_log_returns = port_log_returns.cumsum()

 # Store the last cumulative return (the 12-month return)
 all_cum_log_returns[sim_num] = cum_log_returns[cum_log_returns.size]

 if cum_log_returns.lt(stop_loss).any():
 # Hit the stop-loss level, so find the first one and store it
 cum_log_returns_stop[sim_num] = cum_log_returns[cum_log_returns.lt(stop
 else:
 # Didn't hit our loss level, so use the cumulative return at month 12
 cum_log_returns_stop[sim_num] = cum_log_returns[cum_log_returns.size]

Plot histogram
plt.figure()
plt.hist(all_cum_log_returns)
plt.title(f'Cumulative log return distribution (N={N_sims}) with no stop-loss')
plt.show()

plt.figure()
plt.hist(cum_log_returns_stop)
plt.title(f'Cumulative log return distribution (N={N_sims}) with a {stop_loss:
plt.show()

print(f'Expected cumulative log return ({num_periods} months) without stop loss
print(f'Expected cumulative log return with stop loss of {stop_loss:.2%} = {cum

4/6/25, 12:03 PM Final Project_Sharpe

file:///Users/PC/Desktop/Forging Tomorrow/1 All Materials/4 Personal Website/3 Materials/3 Files/Python Project1_Yanchao Li.html 28/32

Expected cumulative log return (12 months) without stop loss = 23.14%
Expected cumulative log return with stop loss of -15.00% = 21.72%

Code Explanation:

Use the dataframe form to convert the final result into the form of Percentiles

In [19]: percentiles = np.array([1,5,10,1/3*100,50,2/3*100,90,95,99])/100
all_pct = np.quantile(all_cum_log_returns,percentiles)
stop_pc = np.quantile(cum_log_returns_stop,percentiles)
print("Percentiles:")
pct_comparison = pd.DataFrame([all_pct, stop_pc],columns=np.round(100*percentil

4/6/25, 12:03 PM Final Project_Sharpe

file:///Users/PC/Desktop/Forging Tomorrow/1 All Materials/4 Personal Website/3 Materials/3 Files/Python Project1_Yanchao Li.html 29/32

Percentiles:
1.0 5.0 10.0 33.3 50.0 66.7 90.0 95

No
Stop
Loss

-27.286447 -11.512688 -4.263802 14.143395 23.194923 32.086584 50.014638 58.19693

Stop
Loss
15%

-22.348155 -17.887134 -15.446615 13.237175 22.764171 31.925002 49.990970 58.19200

5. Evaluate the Strategy

Code Explanation:

Display the result of chosen industry, stock, and weight.

****************Chosen Industries from 2014 to 2021:****************

pct_comparison.index=['No Stop Loss','Stop Loss 15%']
display(pct_comparison*100)

In [20]: print('****************Chosen Industries from 2014 to 2021:****************')
year_number = ['1st Year','2nd Year','3rd Year','4th Year','5th Year','6th Yea
indus_shown = pd.DataFrame(indus_2014to2021, columns = ['1st Stable', '2nd Stab
indus_shown.index = year_number
display(indus_shown)

print()
print('****************Chosen Stocks and Their Weights from 2014 to 2021:******
stock_shown = pd.DataFrame(stock_2014to2021)
stock_shown.index = year_number

weight_shown = pd.DataFrame(weight_2014to2021)
weight_shown.index = year_number

stock_and_weight = pd.DataFrame()
for i in range(0,15):
 stock_and_weight = pd.concat([stock_and_weight, stock_shown[i]],axis = 1)
 stock_and_weight = pd.concat([stock_and_weight, weight_shown[i]],axis = 1)

display(stock_and_weight)

4/6/25, 12:03 PM Final Project_Sharpe

file:///Users/PC/Desktop/Forging Tomorrow/1 All Materials/4 Personal Website/3 Materials/3 Files/Python Project1_Yanchao Li.html 30/32

1st Stable 2nd Stable 3rd Stable 4th Stable 5th Stable

1st
Year

Communication
Services Industrials

Information
Technology Utilities Materials

2nd
Year

Information
Technology Utilities

Communication
Services Industrials Health Care

3rd
Year Utilities

Communication
Services Health Care

Information
Technology Industrials

4th
Year Utilities Health Care

Communication
Services

Information
Technology Industrials

5th
Year Utilities

Communication
Services

Information
Technology Health Care Materials

6th
Year Utilities

Communication
Services Financials

Information
Technology Health Care

7th
Year Utilities

Communication
Services

Information
Technology Health Care Financials

8th
Year Utilities

Communication
Services Health Care

Information
Technology

Consumer
Staples

****************Chosen Stocks and Their Weights from 2014 to 2021:************

0 0 1 1 2 2 3 3 4 4 ...

1st
Year

T 0.067544 VZ 0.007691 LUMN 0.117670 LMT 0.033973 WM 0.139352 ...

2nd
Year

ADP 0.009036 PAYX 0.254144 IBM 0.140182 SO 0.040641 ED 0.067353 ... W

3rd
Year

SO 0.070136 ED 0.005111 DUK 0.049411 T 0.024078 VZ 0.000022 ... PAY

4th
Year

SO 0.038594 ED 0.012111 DUK 0.029048 JNJ 0.146209 BDX 0.053730 ... PAY

5th
Year

SO 0.192734 ED 0.055391 DUK 0.059741 T 0.000695 VZ 0.001581 ... BD

6th
Year

SO 0.188386 ED 0.025144 DUK 0.035929 T 0.153435 VZ 0.013836 ... PAY

7th
Year

SO 0.009314 ED 0.013672 DUK 0.166926 T 0.012074 VZ 0.167910 ... BD

8th
Year

SO 0.048768 ED 0.055206 DUK 0.012076 T 0.025007 VZ 0.010747 ... PAY

8 rows × 30 columns

Strength:

1. we have a clear stock selection strategy that first ensures the stability of

the investment and, on this basis, selects stocks with higher returns.

2. To ensure the stability of our investment, we combined data analysis and

analysis of the general economic environment when selecting sectors. We

4/6/25, 12:03 PM Final Project_Sharpe

file:///Users/PC/Desktop/Forging Tomorrow/1 All Materials/4 Personal Website/3 Materials/3 Files/Python Project1_Yanchao Li.html 31/32

selected the least volatile sectors and the stocks with the highest Sharpe

ratio, making our investment relatively stable in the sector and single stock

selection.

3. We conducted 100,000 weight assignment simulations to find the

optimal portfolio among them, which allows our portfolio to meet our

investment requirements to a greater extent with less coincidence.

Weakness & Adjustment:

1. The 5 most stable sectors from 2010 to 2021 change little, while the

stocks with the highest sharpe ratios in each sector did not change either.

Adjustment: extend the rebalancing time, for example, once every 3-5

years.

2. The maximum possible loss exceeds 20%, indicating that our strategy is

not stable as we imagined.

Adjustment: Select more sectors and stocks to diversify the riSharpe>

3. The randomness of stocks corresponding to weight is large; for

example, the 15 stocks selected in January 2014 and December 2013 are the

same, but the weight difference is large, which may impact the return on the

investment.

Adjustment: Increase the number of simulations and try to simulate the

distribution of weights as much as possible.

4/6/25, 12:03 PM Final Project_Sharpe

file:///Users/PC/Desktop/Forging Tomorrow/1 All Materials/4 Personal Website/3 Materials/3 Files/Python Project1_Yanchao Li.html 32/32

